http://www.sciencedaily.com/releases/2012/03/120301143735.htm
ScienceDaily (Mar. 1, 2012) — The world's oceans may be turning acidic faster today from human carbon emissions than they did during four major extinctions in the last 300 million years, when natural pulses of carbon sent global temperatures soaring, says a new study in Science. The study is the first of its kind to survey the geologic record for evidence of ocean acidification over this vast time period.
"What we're doing today really stands out," said lead author Bärbel Hönisch, a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory. "We know that life during past ocean acidification events was not wiped out -- new species evolved to replace those that died off. But if industrial carbon emissions continue at the current pace, we may lose organisms we care about -- coral reefs, oysters, salmon."
[...]
In a review of hundreds of paleoceanographic studies, a team of researchers from five countries found evidence for only one period in the last 300 million years when the oceans changed even remotely as fast as today: the Paleocene-Eocene Thermal Maximum, or PETM, some 56 million years ago.
[...]
In the last hundred years, atmospheric CO2 has risen about 30 percent, to 393 parts per million, and ocean pH has fallen by 0.1 unit, to 8.1--an acidification rate at least 10 times faster than 56 million years ago, says Hönisch. The Intergovernmental Panel on Climate Change predicts that pH may fall another 0.3 units by the end of the century,to 7.8, raising the possibility that we may soon see ocean changes similar to those observed during the PETM.
[...]
"Once a species goes extinct it's gone forever. We're playing a very dangerous game."
It may take decades before ocean acidification's effect on marine life shows itself. Until then, the past is a good way to foresee the future, says Richard Feely, an oceanographer at the National Oceanic and Atmospheric Administration who was not involved in the study. "These studies give you a sense of the timing involved in past ocean acidification events -- they did not happen quickly," he said. "The decisions we make over the next few decades could have significant implications on a geologic timescale."
..
No comments:
Post a Comment