Sunday, September 20, 2015

Antarctic Ice Sheet mass is decreasing

If you search for "antarctic ice", you get a lot of links concerning decrease in extent (area). But the most relevant thing is what is happening to the mass, the total amount of ice. And it has been decreasing. because the ice is getting thinner faster than it is spreading.

Global warming has resulted in increased snow fall, because there is more moisture in the air, this might result in increased ice cover.

http://www.antarcticglaciers.org/glaciers-and-climate/antarctic-ice-sheet-surface-mass-balance/

•••••

Overall, a recent estimate puts Antarctic net mass balance at -71 ± 53 gigatonnes per year8, so just negative over the 19 year survey. Mass losses are increasing in West Antarctica and the Antarctic Peninsula. The mass balance of West Antarctica is dominated by dynamic losses from the Amundsen Sea sector, and dynamic gains from the Kamb Ice Stream8. From the period 2005-2010, Shepherd et al. (2012) estimate the mass balance of the entire Antarctic Ice Sheet to be -81 ± 37 gigatonnes per year8.

An unweighted average of recent estimates suggests that Antarctica moved from a weakly negative mass balance in the 1990s to a faster rate of mass loss at a rate of between -45 and -120 gigatonnes per year7. Larger dynamic losses in West Antarctica are being partially offset by increases in accumulation over East Antarctica.

The GRACE (Gravity Recovery and Climate Experiment) satellite gravity mission shows that total mass loss in Antarctica is accelerating over time. They found that total mass loss increased by 26 ± 14 gigatonnes per year from 2002 to 20099. Rignot et al. (2011) found a smaller acceleration of 14.5±2 gigatonnes per year from 1993-20115, but this change is still three times larger than that found for mountain glaciers and ice caps.

•••••

Climate models predict that, for a generally warmer climate, snowfall will increase over Antarctica7. Surface melt will increase around the more northerly Antarctic Peninsula, and dynamic changes such as increased ice discharge12, ice-shelf collapse and grounding line recession13, and marine ice-sheet instability are likely to offset any increases in precipitation7. However, if no dynamical ice response is assumed, then increases in snowfall over the entire continent of 6-16% to 2100 AD and 8-25% to 2200 AD are likely to result in a drop in sea level of 20-43 mm in 2100 and 73-163 in 2200, compared with today14. However, it is more likely that the Greenland and Antarctic ice sheets will lose mass over the next century, with rapid coastal changes, increases in ice flow and ice-shelf collapse all likely4. As a result of these complex expected changes, there are a number of uncertainties in past, present and future ice sheet mass balance.

No comments:

Post a Comment