Friday, May 22, 2015

Bacteria cooperate to repair damaged siblings

http://www.eurekalert.org/pub_releases/2015-05/uow-bct052115.php

Public Release: 21-May-2015
University of Wyoming

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve the fitness of the bacteria population as a whole.

Daniel Wall, a UW associate professor in the Department of Molecular Biology, and others were able to show that damaged sustained by the outer membrane (OM) of a myxobacteria cell population was repaired by a healthy population using the process of OME. The research revealed that these social organisms benefit from group behavior that endows favorable fitness consequences among kin cells.

Wall says, to the research group's knowledge, this is the first evidence that a bacterium can use cell-content sharing to repair damaged siblings.

"It is analogous to how a wound in your body can be healed," Wall says. "When your body is wounded, your cells can coordinate their functions to heal the damaged tissue."

•••••

These myxobacterial cells, in their native environments, must cope with factors that compromise the integrity of the cell, Wall says. Rather than looking out only for themselves like other bacterial species, the individual myxobacteria cells band together as a social group to assist their kin that become damaged.

"Myxobacteria are unusual for bacteria in that they have a true multicellular life," Wall says. "Researchers are interested in how the evolutionary transition occurred toward multi-cellularity; that is, how cooperation develops and single cells are not just interested in themselves. The Darwinian view is that each individual is out for themselves; 'survival of the fittest.'"

"When environmental cells come together, they compete with each other," Wall continues. "With OME, we think it allows myxobacteria cells to transition from a heterogeneous single cellular life to a more harmonious multicellular life."

•••••

"The most direct applicability could be for antibiotic resistance," Wall says. "Within the paper, Chris did an experiment where one strain of myxobacteria conferred antibiotic resistance to another strain. This works by the cells transferring their OM armor.

•••••

No comments:

Post a Comment