http://www.sciencedaily.com/releases/2009/08/090805150530.htm
ScienceDaily (Aug. 5, 2009) — On a 104-degree Friday in July when sunlight bathed The University of Arizona campus, doctoral student Dio Placencia sat before a noisy vacuum chamber in the Chemical Sciences Building trying to advance the renewable energy revolution.
As a member of UA professor Neal R. Armstrong's research group, Placencia conducts research aimed at creating a thin, flexible organic solar cell that could power a tent or keep a car charged between trips to work and back home again.
He's passionate about renewable energy and says it's a waste that so little solar has been incorporated into society. "I have a little flat panel that I walk around with," Placencia said. "I usually put that on my backpack, and I charge my cell phone when I'm walking to school."
The sun is clean and free. "Here it is," he said. "Why not use it?"
-----
"Looking at renewable energy is a perfect place to emphasize that we don't know where the next breakthrough is going to be," said Leslie P. Tolbert, UA vice president for research, graduate studies and economic development. "Somewhere in a lab someplace, there's somebody figuring out a whole new way to capture sunlight. In fact, there are many people doing that. And even they are depending on knowing that there is, behind them, a cadre of basic science researchers producing new information that will feed their thoughts."
Armstrong, a professor of chemistry and optical sciences at the UA, occasionally teaches freshman chemistry. He decided one day near the end of the semester to try to make the material even more relevant. "I said to myself, well, lithium ion batteries in my cell phone, in my iPod," – his daughter had given him one – "I wonder how much coal we burn to charge those guys up at the end of the day. Because that's one of the big drivers for portable power, to get all this stuff off the grid." After making some very conservative calculations, he arrived at an answer, which he shared with the class: "You burn about a quarter of a pound of coal per charge of your lithium ion battery, and you generate about half a pound of CO2 per charge, per battery, per day .... The room got really quiet."
The next time, he intends to calculate how much coal is burned per Twitter tweet.
"It really is chilling," Armstrong said. "You start doing the math and thinking about the number of consumer electronic devices that you and I have added to our lives in the last decade that I charge up typically once every night – my laptop computer and my cell phone. Then you start thinking about, 'What if I do buy an electric car, and I come home at night and plug that sucker in,' and you do the same thing. We'll shut this grid down in no time."
-----
No comments:
Post a Comment