http://www.sciencedaily.com/releases/2009/08/090817143610.htm
ScienceDaily (Aug. 17, 2009) — The four-day testing period the U.S. Environmental Protection Agency (EPA) commonly uses to determine safe levels of pesticide exposure for humans and animals could fail to account for the toxins' long-term effects, University of Pittsburgh researchers report in the September edition of Environmental Toxicology and Chemistry.
The team found that the highly toxic pesticide endosulfan—a neurotoxin banned in several nations but still used extensively in U.S. agriculture—can exhibit a "lag effect" with the fallout from exposure not surfacing until after direct contact has ended.
-----
The team exposed nine species of frog and toad tadpoles to endosulfan levels "expected and found in nature" for the EPA's required four-day period, then moved the tadpoles to clean water for an additional four days, Jones reported. Although endosulfan was ultimately toxic to all species, three species of tadpole showed no significant sensitivity to the chemical until after they were transferred to fresh water. Within four days of being moved, up to 97 percent of leopard frog tadpoles perished along with up to 50 percent of spring peeper and American toad tadpoles.
Of most concern, explained Relyea, is that tadpoles and other amphibians are famously sensitive to pollutants and considered an environmental indicator species. The EPA does not require testing on amphibians to determine pesticide safety, but Relyea previously found that endosulfan is 1,000-times more lethal to amphibians than other pesticides. Yet, he said, if the powerful insecticide cannot kill one the world's most susceptible species in four days, then the four-day test period may not adequately gauge the long-term effects on larger, less-sensitive species.
"When a pesticide's toxic effect takes more than four days to appear, it raises serious concerns about making regulatory decisions based on standard four-day tests for any organism," Relyea said. "For most pesticides, we assume that animals will die during the period of exposure, but we do not expect substantial death after the exposure has ended. Even if EPA regulations required testing on amphibians, our research demonstrates that the standard four-day toxicity test would have dramatically underestimated the lethal impact of endosulfan on even this notably sensitive species."
-----
"The results are somewhat alarming because standards for assessing the impacts of contaminants are usually based on short-term studies that may be insufficient in revealing the true impact," Blaustein said. "The implications of this study go beyond a single pesticide and its effect on amphibians. Many other animals and humans may indeed be affected similarly."
-----
In November 2008, Relyea reported in Oecologia that the world's 10 most popular pesticides—which have been detected in nature—combine to create "cocktails of contaminants" that can destroy amphibian populations, even if the concentration of each individual chemical is within levels considered safe to humans and animals. The mixture killed 99 percent of leopard frog tadpoles and endosulfan alone killed 84 percent.
-----
No comments:
Post a Comment