Friday, March 31, 2017

One of the most troubling ideas about climate change just found new evidence in its favor

https://www.washingtonpost.com/news/energy-environment/wp/2017/03/27/one-of-the-most-troubling-ideas-about-climate-change-just-found-new-evidence-in-its-favor/?tid=ss_fb-amp&utm_term=.f57972d356f5

By Chris Mooney March 27, 2017

Ever since 2012, scientists have been debating a complex and frankly explosive idea about how a warming planet will alter our weather — one that, if it’s correct, would have profound implications across the Northern Hemisphere and especially in its middle latitudes, where hundreds of millions of people live.

The idea is that climate change doesn’t merely increase the overall likelihood of heat waves, say, or the volume of rainfall — it also changes the flow of weather itself. By altering massive planet-scale air patterns like the jet stream (pictured above), which flows in waves from west to east in the Northern Hemisphere, a warming planet causes our weather to become more stuck in place. This means that a given weather pattern, whatever it may be, may persist for longer, thus driving extreme droughts, heat waves, downpours and more.

•••••

Publishing in Nature Scientific Reports, Michael Mann of Pennsylvania State University and a group of colleagues at research institutes in the United States, Germany and the Netherlands find that at least in the spring and summer, the large scale flow of the atmosphere is indeed changing in such a way as to cause weather to get stuck more often.

The study, its authors write, “adds to the weight of evidence for a human influence on the occurrence of devastating events such as the 2003 European heat wave, the 2010 Pakistan flood and Russian heat wave, the 2011 Texas heat wave and recent floods in Europe.”

•••••

On the other hand, some of this isn’t all that complicated. The Northern Hemisphere jet stream flows in a wavy pattern from west to east, driven by the rotation of the Earth and the difference in temperature between the equator and the North Pole. The flow is stronger when that temperature difference is large.

But when the Arctic warms up faster than the equator does — which is part of the fundamental definition of global warming, and which is already happening — the jet stream’s flow can become weakened and elongated. That’s when you can get the resultant weather extremes.

•••••

No comments:

Post a Comment