Saturday, May 30, 2009

Lasers are making solar cells competitive

http://www.fraunhofer.de/EN/press/pi/2009/05/PressRelease29052009.jsp

Press Release 29/05/2009 [Note this is the European style of writing dates. We would write it as 05/29/2009]

Solar electricity has a future: It is renewable and available in unlimited quantities, and it does not produce any gases detrimental to the climate. Its only drawback right now is the price: the electric power currently being produced by solar cells in northern Europe must be subsidized if it is to compete against the household electricity generated by traditional power plants. At "Laser 2009" in Munich, June 15 to 18, Fraunhofer researchers will be demonstrating how laser technology can contribute to optimizing the manufacturing costs and efficiency of solar cells.
...
“Rising energy prices are making alternative energy sources increasingly cost-effective. Sometime in the coming years, renewable energy sources, such as solar energy, will be competitive, even without subsidization,” explains Dr. Arnold Gillner, head of the microtechnology department at the Fraunhofer Institute for Laser Technology in Aachen, Germany. “Experts predict that grid parity will be achieved in a few years. This means that the costs and opportunities in the grid will be equal for solar electricity and conventionally generated household electricity.” Together with his team at the Fraunhofer Institute for Laser Technology ILT in Aachen, this researcher is developing technologies now that will allow faster, better, and cheaper production of solar cells in the future. “Lasers work quickly, precisely, and without contact. In other words, they are an ideal tool for manufacturing fragile solar cells. In fact, lasers are already being used in production today, but there is still considerable room for process optimization.” In addition to gradually improving the manufacturing technology, the physicists and engineers in Aachen are working with solar cell developers - for example, at the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg - on new engineering and design alternatives.

New production technologies allow new design alternatives

At “Laser 2009” in Munich, the researchers will be demonstrating how lasers can drill holes into silicon cells at breathtaking speed: The ILT laser system drills more than 3,000 holes within one second. Because it is not possible to move the laser source at this speed, the experts have developed optimized manufacturing systems which guide and focuses the light beam at the required points. “We are currently experimenting with various laser sources and optical systems,” Gillner explains. “Our goal is to increase the performance to 10,000 holes a second. This is the speed that must be reached in order to drill 10,000 to 20,000 holes into a wafer within the cycle time of the production machines.”

The tiny holes in the wafer - their diameter is only 50 micrometers – open up undreamt-of possibilities for the solar cell developers. “Previously, the electrical contacts were arranged on the top of the cells. The holes make it possible to move the contacts to the back, with the advantage that the electrodes, which currently act as a dark grid to absorb light, disappear. And so the energy yield increases. The goal is a degree of efficiency of 20 percent% in industrially-produced emitter wrap-through (EWT) cells, with a yield of one-third more than classic silicon cells,” Gillner explains. The design principle itself remains unchanged: In the semi-conductor layer, light particles, or photons, produce negative electrons and positive holes, each of which then wanders to the oppositely poled electrodes. The contacts for anodes and cathodes in the EWT cells are all on the back, there is no shading caused by the electrodes, and the degree of efficiency increases. With this technique, it may one day be possible to use unpurified “dirty” silicon to manufacture solar cells that have poorer electrical properties, but that are cheaper.
...

No comments:

Post a Comment